PROFILE STABILITY and NCLS UPDATE

Dan E. Moellman, PE Regional Engineer Gregory R. Baryluk, PE Regional Engineer NESMEA October 29,2002

Profile Wall Pipe Performance

- Pipes respond to load through ring compression and resistance to bending.
- Profile wall pipe performance is dependent on loading, quality of installation, material properties, and wall geometry.

Pipe Failure Modes

- Over Deflection
- Reverse Curvature
- Global Buckling
- Local Buckling

Over Deflection and Reverse Curvature

- Dependent on:
 - Loads (Live and Dead Loads)
 - Soil Quality and Compaction
 - Pipe Stiffness
- The relationship between soil stiffness and pipe stiffness is such that a majority of the strength is dependent on soil stiffness.

Global and Local Buckling

- Dependent on:
 - Loads (Live and Dead Loads)
 - Material properties
 - Pipe wall area
 - Pipe Geometry

Flexural Buckling

- Characterized by over-deflection and development of a hinge.
- Crown stresses are high until material reaches yield point.
- Pipe geometry and material properties control yield point.

Compressive Buckling

- Characterized by formation of dimpling.
- Profile wall ribs deflect until compressive strain reaches material yield.
- Slenderness effects and material properties control yield point.

Profile geometry and profile stability are key to in service pipe performance

Research

- Dimensionless Parameters, Dr. A.P.Moser, Utah State University
- Curved Beam Test, Dr. Les Gabriel, California State University - Sacramento
- LRFD Specifications for Plastic Pipe and Culverts, T.J. McGrath, Simpson Gumpertz and Heger, Inc,

Dimensionless Parameters

 Moser proposed that slenderness ratios and shape considerations appear to control the load carrying capability of profile wall pipes. As such, he developed guidelines that reflected the performance observed in a load cell.

Moser's recommended dimensionless parameters

Dimensionless Parameter	Proposed HDPE value
t _{min} /r	≥ 0.005
t _{min} /l _{uns}	≥ 0.02
L/r ³	\geq 4 x 10 ⁻⁵
A/r	≥ 0.02
L _p /r	\leq 0.3
t_{min} = min. thickness of profile element r = radius to centroid of pipe wall l_{uns} = unsupported width of element A = area of pipe wall per unit length I = moment of inertia of pipe wall per unit length L_p = length of profile section	

Curved Beam Test

- Curved Beam Test is a method to determine instantaneous pipe stiffness under loading. This test produces both bending and wall compression which replicates actual field loading.
- The test shows stable profiles thin less under a constant strain.
- An ASTM standard has been approved for the curved beam test, so a protocol for testing is available.

LRFD Specifications for Plastic Pipe and Culverts

- TRB Report 438 studied dimensional parameters for LRFD design calculations.
- Utilizes idealized box section to determine strain effects and stability.
- Current design practice utilizes width to thickness ratios and is subject to interpretation of cross section analysis.

Analysis of a Profile Section

Idealized Profile Section

Design Calculations

- Idealized profile is input in LRFD design method and strengths of profiles are evaluated based on the relative strain level and slenderness ratio of the individual components.
- The material properties and effective elements determine pipe's performance.

Limitations of Current Design Method

- Idealized profile cannot account for shape improvements in profile design.
- There is no method or standard for measuring idealized section.

Limitations of Current Design Method

- AASHTO limits or minimum dimensions are not established.
- AASHTO published material properties are overly conservative for current resins meeting SP-NCTL requirements.

What needs to be done

- Develop protocol for creating idealized profile from existing pipe profiles and field performance.
- Develop minimum dimensionless parameters that all profiles must meet.
- Update AASHTO specification for true mechanical properties.
- Develop standard QC test for realistic pipe stiffness test and profile stability.

NCLS verification

- In 2000, the AASHTO SOM revised the resin specification to require virgin resins with a SP-NCTL test at 15% stress for 24 hours.
- The finished pipe still needs to meet the ESCR requirement although it is a difficult test to perform with poor repeatability of results.

NCLS verification

- At the 2002 SOM meeting, industry proposed replacing the finished pipe test with an NCLS test on reprocessed plaques from finished pipe.
- The motion failed due to an expressed desire to have the testing performed on samples obtained directly from finished pipe.

NCLS verification

• Industry has begun verification testing from plaques obtained from pipe wall sections with some promising results. However, problems include variability of the pipe samples, sample orientation and test repeatability.

